Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38639703

RESUMO

INTRODUCTION: This study aimed to evaluate the effects of varying auxiliaries on tooth movement and stress distribution when maxillary central incisors were torqued 1° with a clear aligner through finite element analysis. METHODS: Three-dimensional finite element models, including maxillary alveolar bone, periodontal ligament, dentition, and clear aligner, were constructed. According to the auxiliaries designed on the maxillary central incisor, 5 models were created: (1) without auxiliaries (control model), (2) with the power ridge, (3) with the semi-ellipsoid attachment, (4) with the horizontal rectangular attachment, and (5) with the horizontal cylinder attachment. The tooth movement and periodontal ligament stress distribution after a palatal root torque of 1° were analyzed for each of the 5 models. RESULTS: With 1° torque predicted, the maxillary central incisor without auxiliaries showed a tendency of labial tipping, mesial tipping, and intrusion. The rotation center moved occlusally in the power ridge model. The labiolingual inclination variation increased in the semi-ellipsoid attachment model but decreased in the power ridge model. The maxillary central incisor is twisted in the distal direction in the power ridge model. The maxillary central incisor of the horizontal rectangular attachment and the horizontal cylinder attachment model behaved similarly to the control model. Periodontal stresses were concentrated in the cervical and apical areas. The maximum von Mises stresses were 11.6, 12.4, 3.81, 1.14, and 11.0 kPa in the 5 models. The semi-ellipsoid attachment model exhibited a more uniform stress distribution than the other models. CONCLUSIONS: Semi-ellipsoid attachment performed better efficacy on labiolingual inclination, and power ridge performed better efficacy on root control. However, a distal twist of maxillary incisors could be generated by the power ridge.

2.
Nat Commun ; 14(1): 2631, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149708

RESUMO

Although long-read single-cell RNA isoform sequencing (scISO-Seq) can reveal alternative RNA splicing in individual cells, it suffers from a low read throughput. Here, we introduce HIT-scISOseq, a method that removes most artifact cDNAs and concatenates multiple cDNAs for PacBio circular consensus sequencing (CCS) to achieve high-throughput and high-accuracy single-cell RNA isoform sequencing. HIT-scISOseq can yield >10 million high-accuracy long-reads in a single PacBio Sequel II SMRT Cell 8M. We also report the development of scISA-Tools that demultiplex HIT-scISOseq concatenated reads into single-cell cDNA reads with >99.99% accuracy and specificity. We apply HIT-scISOseq to characterize the transcriptomes of 3375 corneal limbus cells and reveal cell-type-specific isoform expression in them. HIT-scISOseq is a high-throughput, high-accuracy, technically accessible method and it can accelerate the burgeoning field of long-read single-cell transcriptomics.


Assuntos
Isoformas de RNA , RNA , Isoformas de RNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Consenso , Isoformas de Proteínas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA
3.
Nat Commun ; 14(1): 1250, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878904

RESUMO

Canonical three-dimensional (3D) genome structures represent the ensemble average of pairwise chromatin interactions but not the single-allele topologies in populations of cells. Recently developed Pore-C can capture multiway chromatin contacts that reflect regional topologies of single chromosomes. By carrying out high-throughput Pore-C, we reveal extensive but regionally restricted clusters of single-allele topologies that aggregate into canonical 3D genome structures in two human cell types. We show that fragments in multi-contact reads generally coexist in the same TAD. In contrast, a concurrent significant proportion of multi-contact reads span multiple compartments of the same chromatin type over megabase distances. Synergistic chromatin looping between multiple sites in multi-contact reads is rare compared to pairwise interactions. Interestingly, the single-allele topology clusters are cell type-specific even inside highly conserved TADs in different types of cells. In summary, HiPore-C enables global characterization of single-allele topologies at an unprecedented depth to reveal elusive genome folding principles.


Assuntos
Cromatina , Humanos , Alelos , Cromatina/genética
4.
J Clin Microbiol ; 59(8): e0007921, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33952598

RESUMO

While China experienced a peak and decline in coronavirus disease 2019 (COVID-19) cases at the start of 2020, regional outbreaks continuously emerged in subsequent months. Resurgences of COVID-19 have also been observed in many other countries. In Guangzhou, China, a small outbreak, involving less than 100 residents, emerged in March and April 2020, and comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When the numbers of confirmed cases among overseas travelers increased, public health measures were enhanced by shifting from self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. In an analysis of 109 imported cases, we found diverse viral variants distributed in the global viral phylogeny, which were frequently shared within households but not among passengers on the same flight. In contrast to the viral diversity of imported cases, local transmission was predominately attributed to two specific variants imported from Africa, including local cases that reported no direct or indirect contact with imported cases. The introduction events of the virus were identified or deduced before the enhanced measures were taken. These results show the interventions were effective in containing the spread of SARS-CoV-2, and they rule out the possibility of cryptic transmission of viral variants from the first wave in January and February 2020. Our study provides evidence and emphasizes the importance of controls for overseas travelers in the context of the pandemic and exemplifies how viral genomic data can facilitate COVID-19 surveillance and inform public health mitigation strategies.


Assuntos
COVID-19 , SARS-CoV-2 , África , Teste para COVID-19 , China/epidemiologia , Genômica , Humanos
5.
Braz J Med Biol Res ; 54(4): e9850, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33656056

RESUMO

Respiratory syncytial virus (RSV) infection is the main cause of lower respiratory tract infection in children. However, there is no effective treatment for RSV infection. Here, we aimed to identify potential biomarkers to aid in the treatment of RSV infection. Children in the acute and convalescence phases of RSV infection were recruited and proteomic analysis was performed to identify differentially expressed proteins (DEPs). Subsequently, promising candidate proteins were determined by functional enrichment and protein-protein interaction network analysis, and underwent further validation by western blot both in clinical and mouse model samples. Among the 79 DEPs identified in RSV patient samples, 4 proteins (BPGM, TPI1, PRDX2, and CFL1) were confirmed to be significantly upregulated during RSV infection. Functional analysis showed that BPGM and TPI1 were mainly involved in glycolysis, indicating an association between RSV infection and the glycolysis metabolic pathway. Our findings provide insights into the proteomic profile during RSV infection and indicated that BPGM, TPI1, PRDX2, and CFL1 may be potential therapeutic biomarkers or targets for the treatment of RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Biomarcadores , Criança , Humanos , Proteômica
6.
Braz. j. med. biol. res ; 54(4): e9850, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1153545

RESUMO

Respiratory syncytial virus (RSV) infection is the main cause of lower respiratory tract infection in children. However, there is no effective treatment for RSV infection. Here, we aimed to identify potential biomarkers to aid in the treatment of RSV infection. Children in the acute and convalescence phases of RSV infection were recruited and proteomic analysis was performed to identify differentially expressed proteins (DEPs). Subsequently, promising candidate proteins were determined by functional enrichment and protein-protein interaction network analysis, and underwent further validation by western blot both in clinical and mouse model samples. Among the 79 DEPs identified in RSV patient samples, 4 proteins (BPGM, TPI1, PRDX2, and CFL1) were confirmed to be significantly upregulated during RSV infection. Functional analysis showed that BPGM and TPI1 were mainly involved in glycolysis, indicating an association between RSV infection and the glycolysis metabolic pathway. Our findings provide insights into the proteomic profile during RSV infection and indicated that BPGM, TPI1, PRDX2, and CFL1 may be potential therapeutic biomarkers or targets for the treatment of RSV infection.


Assuntos
Humanos , Criança , Vírus Sincicial Respiratório Humano , Infecções por Vírus Respiratório Sincicial , Biomarcadores , Proteômica
7.
Mol Med Rep ; 22(5): 3607-3620, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32901873

RESUMO

Asthma is one of the most common childhood chronic diseases worldwide. Subcutaneous immunotherapy (SCIT) is commonly used in the treatment of house dust mite (HDM)­related asthma in children. However, the therapeutic mechanism of SCIT in asthma remains unclear. The present study aimed to investigate the molecular biomarkers associated with HDM­related asthma in asthmatic children prior and subsequent to SCIT treatment compared with those in healthy children via proteomic analysis. The study included a control group (30 healthy children), ­Treatment group (30 children with HDM­related allergic asthma) and +Treatment group (30 children with HDM­related allergic asthma treated with SCIT). An isobaric labeling with relative and absolute quantification­based method was used to analyze serum proteome changes to detect differentially expressed proteins, while functional enrichment and protein­protein interaction network analysis were used to select candidate biomarkers. A total of 72 differentially expressed proteins were detected in the ­Treatment, +Treatment and control groups. A total of 33 and 57 differentially expressed proteins were observed in the ­Treatment vs. control and +Treatment vs. control groups, respectively. Through bioinformatics analysis, 5 candidate proteins [keratin 1 (KRT1), apolipoprotein B (APOB), fibronectin 1, antithrombin III (SERPINC1) and α­1­antitrypsin (SERPINA1)] were selected for validation by western blotting; among them, 4 proteins (KRT1, APOB, SERPINC1 and SERPINA1) showed robust reproducibility in asthma and control samples. This study illustrated the changes in proteome regulation following SCIT treatment for asthma. The 4 identified proteins may serve as potential biomarkers prior and subsequent to SCIT treatment, and help elucidate the molecular regulation mechanisms of SCIT to treat HDM­related asthma.


Assuntos
Asma/tratamento farmacológico , Biomarcadores/sangue , Dessensibilização Imunológica/métodos , Poeira/imunologia , Proteômica/métodos , Pyroglyphidae/imunologia , Animais , Antitrombina III/metabolismo , Apolipoproteína B-100/sangue , Asma/induzido quimicamente , Asma/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Biologia Computacional , Feminino , Fibronectinas/sangue , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Injeções Subcutâneas , Queratina-1/sangue , Resultado do Tratamento , alfa 1-Antitripsina/sangue
8.
IUBMB Life ; 71(7): 891-900, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30724444

RESUMO

Kawasaki disease (KD) is a systemic vasculitis syndrome that leads to coronary artery aneurysm (CAA). While echocardiography is the most important imaging modality for coronary artery assessment, a specific diagnostic biomarker complementary for CAA has not been reported. We aimed to analyze the profiles of exosomal miRNAs extracted from the serum of KD patients and controls to identify candidate biomarkers for CAA. Serum samples from 39 healthy children, 42 CAA patients, 38 coronary artery dilatation (CAD) patients and 45 virus-infected patients including 24 EBV patients and 21 ADV patients were randomly selected. Next generation sequencing was used to analyze serum exosomal miRNA to detect differentially expressed miRNAs. Biomarker candidates were validated by qRT-PCR. One hundred (and) ninety-six differentially expressed miRNAs (DEMs) were detected in CAA patients and healthy children. There were 70 DEMs and 140 DEMs in CAA patients versus CAD patients, and in CAA patients versus virus-infected patients, respectively. We selected the three most upregulated (let-7i-3p, miR-17-3p, and miR-210-5p) and the three most downregulated miRNAs (miR-6743-5p, miR-1246, and miR-6834-5p) in the DEMs, which were expressed differentially in CAA patients versus healthy children, and in CAA patients versus virus-infected patients, not in virus-infected patients versus healthy children, as biomarker candidates. Excluded DEMs of CAD and virus-infected patients, let-7i-3p was detected by sequence data analysis as a biomarker candidate for CAA patients, and then validated by qRT-PCR in a larger set of clinical samples. As a biomarker candidate, let-7i-3p provides an additional means of diagnosing CAA patients. Additionally, miRNA biomarkers complement ultrasonic imaging, allowing for greater diagnostic precision. © 2019 IUBMB Life, 2019.


Assuntos
Biomarcadores/sangue , Aneurisma Coronário/complicações , Vasos Coronários/patologia , Exossomos/genética , MicroRNAs/genética , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , MicroRNAs/sangue , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/etiologia
9.
Sci Rep ; 8(1): 463, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323147

RESUMO

When comets interacting with solar wind, straight and narrow plasma tails will be often formed. The most remarkable phenomenon of the plasma tails is the disconnection event, in which a plasma tail is uprooted from the comet's head and moves away from the comet. In this paper, the interaction process between a comet and solar wind is simulated by using a laser-driven plasma cloud to hit a cylinder obstacle. A disconnected plasma tail is observed behind the obstacle by optical shadowgraphy and interferometry. Our particle-in-cell simulations show that the difference in thermal velocity between ions and electrons induces an electrostatic field behind the obstacle. This field can lead to the convergence of ions to the central region, resulting in a disconnected plasma tail. This electrostatic-field-induced model may be a possible explanation for the disconnection events of cometary tails.

10.
PLoS One ; 9(4): e94250, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743329

RESUMO

Correct and bias-free interpretation of the deep sequencing data is inevitably dependent on the complete mapping of all mappable reads to the reference sequence, especially for quantitative RNA-seq applications. Seed-based algorithms are generally slow but robust, while Burrows-Wheeler Transform (BWT) based algorithms are fast but less robust. To have both advantages, we developed an algorithm FANSe2 with iterative mapping strategy based on the statistics of real-world sequencing error distribution to substantially accelerate the mapping without compromising the accuracy. Its sensitivity and accuracy are higher than the BWT-based algorithms in the tests using both prokaryotic and eukaryotic sequencing datasets. The gene identification results of FANSe2 is experimentally validated, while the previous algorithms have false positives and false negatives. FANSe2 showed remarkably better consistency to the microarray than most other algorithms in terms of gene expression quantifications. We implemented a scalable and almost maintenance-free parallelization method that can utilize the computational power of multiple office computers, a novel feature not present in any other mainstream algorithm. With three normal office computers, we demonstrated that FANSe2 mapped an RNA-seq dataset generated from an entire Illunima HiSeq 2000 flowcell (8 lanes, 608 M reads) to masked human genome within 4.1 hours with higher sensitivity than Bowtie/Bowtie2. FANSe2 thus provides robust accuracy, full indel sensitivity, fast speed, versatile compatibility and economical computational utilization, making it a useful and practical tool for deep sequencing applications. FANSe2 is freely available at http://bioinformatics.jnu.edu.cn/software/fanse2/.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Alinhamento de Sequência/métodos , Algoritmos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genoma Humano/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sequência de DNA , Análise de Sequência de RNA , Fatores de Tempo
11.
Phys Rev Lett ; 108(21): 215001, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-23003270

RESUMO

Reconnection of the self-generated magnetic fields in laser-plasma interaction was first investigated experimentally by Nilson et al. [Phys. Rev. Lett. 97, 255001 (2006)] by shining two laser pulses a distance apart on a solid target layer. An elongated current sheet (CS) was observed in the plasma between the two laser spots. In order to more closely model magnetotail reconnection, here two side-by-side thin target layers, instead of a single one, are used. It is found that at one end of the elongated CS a fanlike electron outflow region including three well-collimated electron jets appears. The (>1 MeV) tail of the jet energy distribution exhibits a power-law scaling. The enhanced electron acceleration is attributed to the intense inductive electric field in the narrow electron dominated reconnection region, as well as additional acceleration as they are trapped inside the rapidly moving plasmoid formed in and ejected from the CS. The ejection also induces a secondary CS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...